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Abstract. Standard methods of characterization of
electron paramagnetic resonance (EPR) spectra
of spin-labeled biomembranes limit the resolution of
lateral heterogeneity to only two or three domain
types. This disables examination of the struc-
ture—function relationship in complex membranes,
which might be composed of a larger number of
different domain types. To enable exploration of this
kind, a new approach based on analysis of EPR
spectra with multi-run, hybrid evolutionary optimi-
zation is proposed here. From the multiple runs a
quasi-continuous distribution of membrane spectral
parameters (order parameter, proportion of spectral
component, polarity correction factor, rotational
correlation time and broadening constant) can be
constructed and presented by a new presentation
technique CODE (colored distribution of EPR spec-
tral parameters). Through this the concept of a ‘‘soft’’
picture of membrane heterogeneity is introduced, in
contrast to the standard ‘‘discrete’’ domain picture.
The ‘‘soft’’ characterization method, established on
synthetic spectra, was used to examine the lateral
heterogeneity of liposome membranes as well as of
membranes of neutrophils from healthy and asth-
matic horses. In liposome membranes the determined
number of domain types was the same as already
established by standard procedures of EPR spectra
line-shape interpretation. In membranes of neu-
trophils a quasi-continuous distribution of membrane
domain properties was detected by the new method.

Key words: Complexity of biological membranes —
Membrane lateral lipid domains — Electron para-
magnetic resonance (EPR) — Hybrid evolutionary
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Introduction

The lateral membrane heterogeneity has been studied
intensively in the past few years by many different
experimental techniques, e.g., electron paramagnetic
resonance (EPR) spectroscopy with spin labeling
(Gaffney & Marsh, 1998; Žuvič-Butorac et al., 1999;
Ge et al., 1999; Vishnyakova et al., 2000; Arsov,
Schara & Štrancar, 2002; Koklič, Šentjurc & Zeisig,
2002), fluorescence resonance energy transfer (Loura,
Fedorov & Prieto, 2001), single particle tracking
(Tomishige & Kusumi, 1999), atomic force micros-
copy (Rinia & de Kruijff, 2001), and Raman scat-
tering microscopy (Percot & Lafleur, 2001). EPR is
an important method for lateral heterogeneity char-
acterization because it allows studying intact complex
systems of cell suspensions. In addition, the time scale
of dynamic events that are observed is appropriate
(Marsh & Horváth, 1998).

A lateral lipid domain is a spatially defined
membrane region that has one or more measurable
properties that distinguish it from neighboring re-
gions of the membrane (Bloom & Thewalt, 1995).
The particular domain type in general represents a
group of domains with equal motional characteris-
tics. In the EPR picture, distinct domain types are
characterized with sets of different spectral parame-
ters where each set defines one spectral component.
The parameters describe the rate and anisotropy of
motion of the spin labels introduced into the mem-
brane, as well as the polarity of spin label environ-
ment in the particular domain type. In general, EPR
in combination with different characterization meth-
ods cannot determine the size or the size distribution
of domains of the same type (but see Sankaram,
Marsh & Thompson, 1992). The proportion of each
domain type does not directly represent the area of
this domain type but depends on the partitioning of
the spin probe molecules between domains. One
should also be aware of the possibility that not all the
spectral components originate from membrane
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domains. Some of them may be a consequence of spin
probes in a solution, micelle aggregates of spin
probes, etc.

Lateral domain studies are important for show-
ing the interdependence between the lipid domain
structure changes and various physiological condi-
tions or activation of various membrane elements
such as membrane-bound proteins (Dibble et al.,
1996; Hønger et al., 1996; Sok, Šentjurc & Schara,
1999; Žuvič-Butorac et al., 2001; see also reviews by
Devaux & Seigneuret, 1985; Tocanne et al., 1994;
Edidin, 1997). In this respect it was shown that the
EPR spectra of different spin labels in different kinds
of cells, liposomes, etc. cannot be described with one
spectral component determined by a single group of
EPR spectral parameters. Instead, EPR spectra
should usually be decomposed into at least two
spectral components, each described by a separate
group of EPR spectral parameters.

The decomposition to at least two spectral do-
main types is indubitable in the systems composed of
different lipid species (including cholesterol or
sphingolipids) and/or membrane proteins. The num-
ber of spectral components is limited primarily be-
cause the interpretation of the results becomes very
complicated and unclear due to the large number of
spectral parameters (e.g., a characteristic number of
spectral parameters is 5 per spectral component). At
the same time, no dramatic improvement in the
goodness of fit can be achieved, usually due to the too
low signal-to-noise ratio value. Finally, the number
of spectral components is limited also by the effec-
tiveness of the optimization procedures by which the
spectral parameters’ extraction is performed. To
summarize, interpretation ability, signal-to-noise
ratio, and optimization effectiveness usually limit the
number of spectral components.

While the signal-to-noise ratio can be improved
by a moderated experimental approach, the optimi-
zation effectiveness as well as the interpretation
ability can be improved by modifying the spectra
characterization procedures. A large effort was made
to bring the spectral characterization procedures as
close as possible to full automation. Different re-
search groups attempted this problem by applying
various optimization methods, e.g., deterministic
Simplex downhill and Levenberg-Marquardt, stoch-
astic Monte Carlo, maximum-likelihood common-
factor analysis (Kirste, 1992; Moens et al., 1993;
Chachaty & Soulie, 1995; Eviatar, van der Heide &
Levine, 1995; Budil et al, 1996; Della Lunga, Pogni &
Basosi, 1998). Although all optimization techniques
themselves are self-navigated, many of them still need
an appropriate starting point (initial set of spectral
parameters) for optimization to converge. Since op-
timizations have to be rerun for several times to check
for convergence, accuracy as well as uniqueness of a
solution, this procedure may involve a substantial

role and time-cost of a spectroscopist. Stochastic
population-based optimization can overcome this
problem, since it processes a population of candidate
solutions. Therefore it enables completely automatic
characterization and at the same time provides solu-
tions that are not biased by the choice of starting
points. Our recent work on spectral characterization
based on hybrid evolutionary optimization (HEO)
makes the determination of spectral parameters ac-
curate and independent from the choice of starting
points (Filipič & Štrancar, 2001, 2002).

Due to the stochastic nature of the HEO method,
it has to be applied several times to check for the
uniqueness of the solutions. However, the probability
of finding the real global minimum in a single run is
high with HEO, so only a few runs are enough to get
one (best-fit) solution. When simple few-domain
spectra (e.g., 2 to 4 domains) are fitted, all solutions
that possess high goodness of fit are similar, i.e., all
sets of the spectral parameters are almost equal
(within error estimation). However, when complex
spectra are fitted, the multiple runs of the stochastic
optimization procedure provide additional solutions,
which have similar goodness of fit but different sets of
spectral parameters. The probability of finding such
(other-than-best-fit) solutions remains high even if
HEO is run for 200 times. This suggests that other-
than-best-fit solutions should be taken into consid-
eration as well. However, to identify and interpret
this large solution space, a new technique for pres-
entation of the solutions is needed.

In this article we propose an approach to
describe the lateral heterogeneity of complex mem-
branes by constructing quasi-continuous distribu-
tions of EPR spectral parameters from the solutions
of the multiple runs of HEO. This ‘‘soft’’ charac-
terization method elucidates the problem of the
number of spectral components and provides a un-
ique method for exploring the lateral heterogeneity
of the biomembranes. The properties of the distri-
bution functions of EPR spectral parameters were
inspected when characterizing EPR spectra of
membranes of DPPC liposomes and horse neu-
trophils.

Materials and Methods

MATERIAL PREPARATION

DPPC Liposomes

Pure DPPC membranes were prepared in the form of multilamellar

liposomes. 50 mg of dry lipids (obtained from Avanti Polar Lipids,

Birmingham, AL) were dissolved in 3 ml of chloroform and 1 ml of

diisopropylether. The organic solvents were evaporated on a rotary

evaporator in a glass flask forming lipid film. One ml of phosphate

buffer saline (PBS; 290 mOsmol/kg, pH 7.4) was added to the flask.

The suspension was hand-shaken and sonicated for 15 min.
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Horse Neutrophils

Neutrophils were taken from bronchoalveolar fluid (BAL) from

healthy horses and horses suffering from the chronic obstructive

pulmonary disease (COPD), known under different synonyms as

asthma-like syndrome. Healthy horses and the ones with COPD

were sedated with medetomidine purchased from Domosedan

(Turku, Finland). A 2.5-m long endoscope was introduced through

the pre-cleaned and topically anesthetized nostril and advanced

until it wedged in a bronchus. 300 ml of pre-warmed sterile phys-

iological saline solution was infused through the biopsy channel

into the bronchus and immediately re-aspirated into a sterile flask

cooled in ice. Polymorphonuclear leukocytes were isolated from

whole BAL samples.

EPR MEASUREMENTS

An appropriate volume of 10�4
M solution in ethanol of lipophilic

spin probe, methyl ester of 5-doxyl palmitate MeFASL(10,3)

(nitroxide radical), was added to the glass tube. A thin film of spin

probes deposited on the walls of the glass tube was formed by

evaporation of ethanol. To the tube the prepared material was

added. The tube was then stirred for 10 minutes and in the case of

neutrophils centrifuged for 5 min at 100 · g. The labeled sample

was transferred into a quartz-glass capillary (1 mm inner diameter)

and the EPR spectrum was recorded on a Bruker ESP 300E

spectrometer (Karlsruhe, Germany) with microwave frequency of

9.59 GHz and power of 20 mW, modulation frequency of 100 kHz

and amplitude of 0.5 G. If needed, the spectra were accumulated

over several scans in order to gain the signal-to-noise ratio S/N

(typical values for S/N were 150–250).

THE SPECTRUM SIMULATION MODEL

Generally, to describe EPR spectra of spin probes, the stochastic

Liouville equation is used (Robinson et al., 1985; Schneider &

Freed, 1989; Budil et al., 1996). In a membrane system, labeled with

doxyl-fatty-acid spin probes and measured at physiological tem-

peratures, the majority of the rotational motions are fast with re-

spect to the EPR time scale. Therefore, the simplification to the

restricted fast-motion approximation is physically justified. How-

ever, it is possible that the proposed model will not cover the

molecular motions at lower temperatures and/or of some spin

probes that exhibit slower (‘‘intermediate slow’’) motion. In such

case the slow motional spectral components could be misinter-

preted as restricted fast motional components with high values of

order parameter and broadening constant, but low value of rota-

tional correlation time. Consequently, the used spectrum-simula-

tion model will empirically describe the slow motional spectral

component as a highly restricted one. Although, the model is not

able to cover the full range of possible motions, we believe that,

especially for the spectra taken at physiological temperatures for

the doxyl-fatty-acid spin probes, the benefits in terms of time-cost

justify the use of fast-motion approximation. This concept is

therefore a compromise between accuracy of the physical model

and low time-cost of the characterization, which enables the

characterization to be performed on a PC computer.
Since the approach has been already discussed elsewhere

(Schindler & Seelig, 1973; Štrancar, Šentjurc & Schara, 2000), it is

only revised here. In the model it is taken into account that the

spectrum is composed of several spectral components, which are

described with different sets of spectral parameters and reflect

different environments of the spin probe. The calculation of every

spectral component involves three calculation steps. In the first

step, the magnetic interaction tensors are averaged over fast sto-

chastic restricted rotational motions of the nitroxide spin probes to

calculate the resonant field distribution (Van, Birrell & Griffith,

1974; Griffith & Jost, 1976). This is done according to the order

parameter, S, for the assumed averaged orientation of the nitroxide

group relative to the membrane normal vector. The use of a scalar

order parameter limits the model application to the experiments,

which involve fatty-acid spin probes, physiological temperatures

and systems that do not exhibit strong rotational restrictions to

axial rotation of the spin probes. This last approximation is fulfilled

if the concentration of cholesterol or other rigid membrane con-

stituents is low. In the same calculation step, the polarity correction

factors pA and pg are used to describe the effect of the neighboring

electric fields (including effect of polarity) that influence the elec-

tron-density distribution of the spin-probe molecules (Marsh,

1981). The second step includes derivation of the Lorentzian line-

widths where the motional narrowing approximation (Nordio,

1976) is used. Two parameters are applied: the rotational correla-

tion time sc, and the broadening constant W. sC describes the

effective rate of motion; for the sake of smaller error only one

rotational correlation time is used. W arises primarily due to un-

resolved hydrogen superhyperfine structure together with minor

paramagnetic impurities (e.g., due to usually present oxygen), ex-

ternal field inhomogeneities, and modulation effects, which are

about the same for all domain types. But particular domain types

could differ in the line broadening due to high spin-label concen-

tration or anisotropy of spin-label motion. In the third step, the

convolution of the resonant field distribution with the first deriv-

ative of the lineshape is calculated for all spectral lines. The pro-

portions of a particular spectral component are taken into account

according to the weighting factor (proportion) d. The result of the

convolution is the lineshape of the simulated EPR spectrum. This

procedure is implemented in the software EPRSIM Version 4.9

(� Janez Štrancar, 1996-2003; http://www2.ijs.si/�jstrancar/soft-

ware.htm).

EPR SPECTRAL DECOMPOSITION AND OPTIMIZATION

The described procedure allows us to decompose a spectrum I(B)

into a different number Nd (Nd £ 5) of spectral components Ii(B)

described by different spectral parameters:

IðBÞ ¼
XNd

i¼1

IiðBÞdi; ð1Þ

where B is a magnetic field, i is the spectral component index, di, is

the proportion of individual spectral component ð
PNd

i¼1 di ¼ 1Þ By
the given values of spectral parameters, the model produces a si-

mulated EPR spectrum.
Using the proposed simulation model we have to optimize the

spectral parameters to find a set that produces the best-fit simulated

spectrum. To navigate the optimization, an objective fitting func-

tion is introduced. It measures the goodness of fit of the simulated

spectrum with the experimental one. The measure is the reduced v2,
i.e. the sum of the squared residuals between the experimental and

simulated spectra divided by the squared standard deviation of the

experimental points r, and by the number of points in the ex-

perimental spectrum N (in our case, N = 1024):

v2 ¼ 1

N

XN
j¼1

ðyexpj � ysimj Þ2

r2
: ð2Þ

The standard deviation r is assessed numerically from the

points in the simulated spectrum regions where the derivatives are

close to zero. This is usually at both ends of the spectrum.
Since we deal with a large number of spectral parameters, an

evolutionary optimization method, such as HEO was used (Filipič
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& Štrancar, 2001, 2002). The HEO belongs to the class of the

stochastic and population-based optimization algorithms. It uses a

population of spectral parameter sets (‘‘individuals’’; usually 200 or

300), which are optimized at the same time. This type of optimi-

zation is described in details elsewhere (Goldberg, 1989). The basic

scheme of an optimization loop of an evolutionary algorithm

consists of selection of parameters of some spectra from the po-

pulation, application of the genetic operators such as crossover,

mutation and ‘‘directed mutation’’ (local optimization such as

Simplex Downhill), which generate an ‘‘offspring’’ generation, and

replacement of the ‘‘parent’’ population by the better part of an

‘‘offspring’’ population randomly. The combination of the genetic

algorithm and local search based on Downhill Simplex enables

HEO to find promising regions of solutions and at the same time to

extract fine-tuned solutions (Filipič & Štrancar, 2001, 2002). Ran-

dom generation of the starting population eliminates human na-

vigation from spectral characterization and enables the automation

of the whole procedure. Moreover, the stochastic nature of the

HEO routine makes it possible to control the complexity of the

solution-space and appropriateness or limitations of the simulation

model. At the same time it allows us to determine the errors of the

spectral parameters independently of the procedure, which involves

the covariance matrix analysis. The described optimization method

is implemented in EPRSIM 4.9.

CHARACTERIZATION OF MEMBRANE LATERAL

HETEROGENEITY

Standard Characterization Method

The standard characterization of the EPR spectra resolves a dis-

crete picture of lateral membrane heterogeneity by spectral de-

composition. The number of spectral components Nd has to be

chosen in advance. All the information is obtained only from the

best-fit solution. The HEO routine must be performed several times

to achieve appropriate statistics. Running this procedure for M

times enables us to choose the best fit fromM best fits provided by

M runs of the HEO. Obtained parameters can be summarized in a

table (Nd sets of parameters) and simple graphs. Since only the best

fit is used, all additional information from other-than-best-fit so-

lutions, which may give us some hints about the appropriateness of

the simulation model or about the unresolved complexity of the

solution, are neglected.

Soft Characterization Method

In general, when the number of spectral components diverges, we

should speak about a continuous picture of lateral membrane

heterogeneity instead of the discrete one. If exact parameterization

of the complex spectra in the continuous picture could be obtained,

one would deal with the distribution of spectral component pro-

portions over various spectral parameters. Such distribution will be

referred to as ‘‘original distribution’’. The distribution, which in-

cludes few major spectral components and lots of minor spectral

components, will be denoted as ‘‘quasi-continuous’’ original dis-

tribution. The term ‘‘major’’ component indicates a spectral com-

ponent with a significant proportion and at the same time a

component found by the majority of HEO runs. Since we also want

to detect ‘‘minor’’ spectral components, i.e., the quasi-continuous

distribution, the approach will be referred to as ‘‘soft’’ characteri-

zation method.
Let us suppose that the EPR spectrum of a complex membrane

can be described similar to Eq. 1

IðBÞorig ¼
XNorig

d

i¼1

IiðBÞdi; ð3Þ

whsere N orig
d is the number of spectral components arising from the

existing membrane heterogeneity. It is then expected that the

standard method can be successfully applied when the number of

fitted spectral components Nd is equal or higher than Norig
d . How-

ever, when Norig
d is high, the choice of an arbitrarily high Nd would

make the procedure too slow and inefficient. On the other hand, Nd

should not be lower than the number of major spectral compo-

nents. Therefore,Nd = 4 seems to be an appropriate choice, since it

is higher than the usual number of domain types used for de-

scribing membrane heterogeneity but it is still not too large.
The soft-characterization method differs from the standard

method only in collecting and presenting the solutions. In contrary

to the standard-characterization method,M best fits ofM runs are

used instead of only the best one. Because we are interested in

motional and polarity characteristics, deduced from each spectral

component i (i = 1, . . ., Nd) of each run m (m = 1, . . ., M), the

following spectral parameters will represent the ‘‘fast-motion ap-

proximation basis set’’: order parameter Si,m, spectral component

proportion di,m, rotational correlation time sc,i,m, broadening

constant Wi,m, and hyperfine polarity correction pA,i,m. Since the

large number of HEO runs had to be implied (M in the order of

hundreds), a large amount of data, i.e., M · Nd sets of 5 para-

meters, emerges. To present this data, a special compact form of

presentation is used. All M best-fit solutions with Nd spectral

components are presented together, resulting in a pattern

mimicking the original distribution of proportions.
In Fig. 1, the construction of this distribution is demonstrated.

The synthetic spectrum is presented, which is constructed from 15

spectral components. In Fig. 1A1 EPR spectra of these spectral

components are plotted with the intensity corresponding to the

appropriate proportions and at positions corresponding to the

order parameters of individual spectral components. The scale for

the order parameter in Fig. 1A1 is the same as in Fig. 1A2, where

the distribution of spectral component proportions is plotted

against order parameter. This distribution should be considered as

‘‘original distribution’’. When searching for this ‘‘original dis-

tribution’’, lots of equivalent projections (solutions of different

HEO runs) are found with the proposed number of spectral com-

ponents Nd = 4. In Fig. 1B1 four such solutions (fits to the spec-

trum constructed of components shown in Fig. 1A1) are presented

in the same way as the components in Fig. 1A1. To search for the

original distribution we plot the proportions of individual spectral

components of all solutions against the order parameter. In such a

way, the distribution-like pattern in Fig. 1B2 is constructed. To find

the best approximation of the original distribution one has to

perform several (hundreds of) runs. Since all spectral simulations

are performed within the model characterized by Nd spectral

components (for example, Nd = 4), it is assumed, that each opti-

mization run provides an Nd-dimensional projection of the original

distribution (4-dimensional projection or shortly denoted as 4D-

projection).
If the original distribution is continuous, any proposed number

of spectral components Nd applicable within the simulation model

is smaller than the original number of spectral components Norig
d .

Therefore the fitting function v2 of any solution could not reach the

theoretical limit of 1. At the same time, many Nd projections can

have similar v2. They are referred to as equivalent projections; v2-
equivalent but parametrically different solutions. To find them, the

HEO routine is used due to the features already discussed (sto-

chastic, genotype-driven, etc.) (Goldberg, 1989).
In order to present any kind of distribution-like patterns, the

parameter over which the distribution is to be determined should

be chosen. The appropriate parameter to classify the spectral
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component i of a solution m seems to be the order parameter Si,m,

because the goodness of fit is the most sensitive just to the order

parameter. To present the proportion of each spectral component

and to take into account the goodness of fit v2m of solution m as well

as the repeatability in terms of spectral component density q(Si,m),
the transformed proportions d�i;m will be shown. The spectral

component density q(Si,m) measures the repeatability of HEO-

found spectral components at various order parameters Si,m,

counted within the grid DS = 8/(M · Nd). This assumes that an

average density within one grid cell is 8 counts, as would be ex-

pected for a random distribution of order parameters over the

entire interval forM= 200 and Nd = 4. The transformation of di,m
to d�i;m is therefore defined through

d�i;m ¼ di;m � exp � 1

2

v2m � v2min

rv2

� �2
" #

� exp � 1

2

rq

qðSi;mÞ

� �2
" #

ð4Þ

with v2-filter width rv2 and density-filter width rq. The value of v2-
filter width rv2 is chosen in such a way that the interval (v2min,

v2min + rv2 ) includes 66% of all solutions. This limit was

determined empirically and is discussed in the Results section. The

second value, rq defines the significance level of spectral compo-

nent density, chosen to be equal to 5 counts per grid cell. The

proposed transformation assures that the proportions of spectral

components, which correspond to most-favorable fits, will remain

almost unchanged. On the contrary, the less-favorable fits that

possess much higher values of the fitting function v2 compared to

v2min, as well as those solutions that have low spectral component

density q, are diminished.

In all the presentations, transformed proportions d�i;m are

plotted against order parameters Si,m, where the spectral compo-

nent i of the solution m is presented with a thin vertical bar of

height, which corresponds to d�i;m, at the position of Si,m. In addi-

tion, if more information about the solution in terms of the other

three spectral parameters (sc,i,m, Wi,m, and PA,i,m) is desired, it can

be presented in terms of color of a particular bar. The color of each

bar can be defined through the RGB specification where the in-

tensity of each color component (red, green, and blue, respectively)

represents the relative value of the parameters sc,i,m, Wi,m, and

PA;i;m respectively (see the ‘‘calibration cube’’ shown in Fig. 3

legend). This enables us to present additional three dimensions.

Combining the 2-dimensional presentation described above and the

coloring of the bars, we are therefore able to compactly present a 5-

dimensional data structure. Here it should be stressed that the

RGB presentation is not sensitive to small-parameter variations.

Consequently, parametrically similar spectral components will be

presented with similar colors, enabling classification of a group of

spectral components as a particular domain type. This would not

be possible if the coloring would be too sensitive to small parameter

changes.
Since different colors correspond to different characteristics

(rate sc, anisotropy of motion and spin label concentration W, as

well as polarity pA) this presentation can help to explore the

complex domain structures. It enables us to monitor the changes in

the proportion distributions as well as the properties of each so-

lution when the system is exposed to different modification or ex-

ternal stress conditions. From now on the presentation of soft

characterization will be referred to as colored distribution of EPR

spectral parameters (CODE).

Fig. 1. A schematic presentation of the construction of a distri-

bution of spectral component proportions against the order pa-

rameter S in the soft characterization method. (A1) Fifteen original

spectral components (center field 0.342 T, sweep 0.01 T) composing

a (2+13)-D spectrum are plotted with the intensity corresponding to

appropriate proportions and at positions corresponding to the

order parameters S of particular spectral components. The sum of

these 15 spectral components is shown at the bottom. (A2) The

distribution of spectral component proportions d plotted against

order parameter. This distribution is considered as the ‘‘original

distribution’’. (B1) Four of the equivalent 4-D projections—solu-

tions of different HEO with Nd = 4—of the spectrum constructed

from components (center field 0.342 T, sweep 0.01 T) shown in A1,

presented in the same way as the components in A1. Sums of 4

spectral components are shown at the bottom. (B2) The distribu-

tion-like pattern is constructed from the mentioned 4 equivalent

projections by plotting the proportions d of individual spectral

components of these 4 solutions against the order parameter S.
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Fig. 2.
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RESULTS

ESTABLISHMENT OF SOFT CHARACTERIZATION ON

SYNTHETIC SPECTRA

In order to establish the soft approach to the lateral
heterogeneity picture, we made several numerical
experiments, which involved multi-run optimizations
on synthetic spectra with predefined spectral param-
eters. The spectra were calculated within the simula-
tion model introduced previously. The number of
runs in each characterization procedure was M =
200 to gain the resolution.

To assure that this approach does not generate
solutions with spectral components, which cannot be
found in the original distribution, we first performed
optimizations of the spectral parameters of a syn-
thetic 3-D spectrum (Fig. 2A1). This spectrum is
constructed from three spectral components shown in
the original distribution (Fig. 2A2). The predefined
number of spectral components within the charac-
terization procedure was Nd = 4. The multi-run
HEO optimization gives three spectral components in
the discrete-like distribution of calculated spectral
components against the order parameter in Fig. 2A3.
The width of each apparent group of determined
spectral components represents its standard deviation
and includes the statistical error due to spectral noise
as well as the systematic error due to the stochastic
optimization. It can be seen in Fig. 2A3 that the soft
characterization method does not generate additional
solutions with respect to the original distribution.
Although the procedure was allowed to find four
arbitrary spectral components (since Nd = 4), CODE
revealed three (Fig. 2A3), which is the same as in the
original distribution (Fig. 2A2). This indicates that
the proposed method does not overfit spectra. Since
we do not have a continuous distribution of spectral
components, this represents a case where also the
standard characterization method could be used.

In addition, the v2 Distribution of components of
all solutions against order parameter is shown in Fig.
2A4. Each point represents the spectral component
with appropriate order parameter and with v2 that

equals the v2 of the corresponding solution. The
points with lower v2 values (good solutions) nicely
resolve a discrete-like distribution, i.e., all three major
spectral components are found. From comparison of
Fig. 2A3 and Fig. 2A4 it can be seen that the points
with higher v2 values do not represent appropriate
solutions. Therefore they should be filtered out by the
v2-filter (explained in the previous section). In the
same figure, Fig. 2A4, the v2-filter upper limit is rep-
resented with the horizontal line. Below the line, there
are 66% of points with lower v2. Moreover, it can be
seen that the spectral component density is high only
at order parameter values that are close to order
parameters of spectral components of the original
distribution. Other points where the density is much
lower should be filtered out by the density filter (ex-
plained in the previous section).

In the second case, the (2+13)-D spectrum (Fig.
2B1; already shown in Fig. 1A) is constructed from
two major components and thirteen minor ones. As it
was already described in a previous section, the terms
‘‘major’’ and ‘‘minor’’ refer to the proportions of the
spectral components. The large number of minor
components emulates a quasi-continuous spectral-
component distribution (Fig. 2B2). In Fig. 2B3 the
result of multi-run HEO with Nd = 4 (4-D projec-
tion) is shown. The two major components are ob-
tained successfully. Moreover, also the majority of
minor components (with smaller proportions) are
found. It can be seen in Fig. 2B4 that the v2 distri-
bution is much more dispersed than the v2 distribu-
tion shown in Fig. 2A4. The higher v2 values arise
mainly do to inability of the simulation model with
Nd = 4 to simulate spectra composed of more spec-
tral components than Nd. At the same time the
spectral component density was found to be much
more uniform than in the problem presented in Fig.
2A4. This indicates that the multi-run HEO finds
many equivalent and at the same time statistically
significant solutions within the proposed simulation
model, which can then be represented to give a quasi-
continuous distribution. Similarly as in Fig. 2A4, the
v2-filter upper limit is represented with a horizontal
line, below which 66% of points with lower v2 lie.

Fig. 2. (A1) A synthetic 3-D spectrum composed of three spectral

components (center field 0.342 T, sweep 0.01 T). (A2) The original

distribution of proportions of three spectral components against

the order parameter S from which the 3-D spectrum is constructed.

(A3) The result of multiple runs of HEO: the discrete-like distri-

bution of proportions of spectral components against the order

parameter S. The width of each apparent group of determined

spectral components represents its standard deviation and includes

the statistical error due to spectral noise as well as the systematic

error due to the stochastic optimization. (A4) The v2-distribution of

spectral components of all solutions of multi-run HEO plotted

against the order parameter S. Each point represents the spectral

component with appropriate order parameter S and v2. The v2-

filter upper limit is represented with the horizontal line, below

which 66% of points with lower v2 lie. (B1) Synthetic (2+13)-D

spectrum composed of 15 spectral components (center field 0.342

T, sweep 0.01 T). (B2) The original distribution of 2 major spectral

components (with high proportion) and 13 minor ones (with small

proportion), from which the synthetic (2+13)-D spectrum is con-

structed. (B3) The result of multi-run HEO: the continuous-like

distribution of proportions of spectral components plotted against

the order parameter S. (B4) The v2-distribution of spectral com-

ponents of all solutions of multi-run HEO plotted against order

parameter S. The v2-filter upper limit was determined similarly as

in Fig. 2A4. The number of runs in each characterization procedure

was 200.

b
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Fig. 3. EPR spectra (center field 0.342 T, sweep 0.01 T) and cor-

responding CODEs of the following samples: (A) synthetic 3-D; (B)

synthetic (2+13)-D; (C) DPPC liposomes at 55�C; (D) DPPC lipo-

somes at 37�C; (E) neutrophils from bronchoalveolar fluid of a

healthy horse—Nph H—at 37�C; (F) neutrophils from bronchoal-

veolar fluid of an asthmatic horse—Nph A—at 37�C. All experi-

mental samples were spin-labeled by MeFASL(10,3). The number

of HEO runs in each characterization procedure was 200. (Legend)

The color of a bar in a CODE is defined by the RGB specification

where the intensity of each color component (red, green, and blue,

respectively) represents the relative value of the spectral parame-

ters: the rotational correlation time sc from 0 to 3 ns, the broad-

ening constant W from 0 to 0.0003 T, and the hyperfine polarity

correction pA from 0.8 to 1.2.
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The combination of problems such as 3-D and
(2+13)-D was used to tune the filter widths in order to
detect the quasi-continuous distribution and at the
same time to eliminate solutions that possess lower
goodness of fit and lower densities. The 3-D problem
requires more restricted v2-filtering and density-fil-
tering. On the contrary, the (2+13)-D problem re-
quires just the opposite, since the dispersion of points
can report about the quasi-continuous distribution
which can possibly exist in the spectra. Therefore we
tuned both filter widths to enable detection of discrete
and quasi-continuous distributions at the same filter-
width values. The resulting filter-width values are
66% for v2-filtering and 5 for density-filtering.

SOFT CHARACTERIZATION OF LIPOSOMES

Firstly, the soft characterization technique was ap-
plied to the membranes of pure DPPC liposomes
labeled with MeFASL(10,3). An EPR spectrum re-
corded at 55�C (Fig. 3C), which is approximately
13�C above the main transition between the gel lipid
phase and the fluid disordered lipid phase (Heimburg,
1998), was characterized in order to check whether
the proposed approach reports fluid disordered
phase. In the CODE (Fig. 3C), one major peak of
spectral components with low order parameter and
additional spectral components with much smaller
proportions and even lower order parameter can be
seen. The spectral components in the CODE are
characterized by the rotational correlation time sc
around 1 ns, the hyperfine polarity correction pA is
greater than 1, whereas the broadening constantW is
small enough to confirm low local concentration of
spin probe molecules and negligible anisotropy of
motion. The CODE of DPPC liposomes at 55�C
therefore reveals fluid membrane structure, as it is
expected from the literature (Vist & Davis, 1990).

On the other hand, the spectrum of the same
sample at 37�C (Fig. 3D) was also recorded to check
how the method describes the coexistence of lipid
phases expected at 37�C, i.e., between the main
transition at 42�C and the pre-transition at 35�C for
DPPC (Tsuchida & Hatta, 1988; Mouritsen &
Jørgensen, 1994). It can be seen from Fig. 3D that
there are two major broad peaks of spectral compo-
nents, one with the order parameter S around 0.5 and
the other with S around 0.15. This CODE reveals
slower motion at a rate of 2 ns for the group of less
ordered (violet) spectral components, but faster mo-
tions for the spectral components with S around 0.5
(light green) and spectral components with S around
0.35 (light blue). Moreover, the light green spectral
components correspond to higherW, which indicates
that local concentration of spin probes could be
higher in that domain type or that the anisotropy of
motion is no more negligible.

SOFT CHARACTERIZATION OF BIOMEMBRANES

Although the soft characterization was established on
many numerical experiments on the synthetic spectra
and the spectra of liposome membranes, the main
emphasis should be on the application of this method
for the biomembrane complexity characterization.
Consequently, we want to show in this section the
benefits of the soft characterization method on the
spectra of biomembranes, i.e., spin-labeled mem-
branes of horse neutrophils. The number of runs in
each characterization procedure was againM= 200.
The aim is to compare the CODEs of liposomes and
neutrophils, as an example of increased composi-
tional complexity, and neutrophils from bronchoal-
veolar fluid of the healthy horses and of those with
asthma-like disease, as an example of different
physiological conditions.

As it can be seen from the CODE characterization
of membranes of healthy neutrophils (Fig. 3E), these
membranes possess more discrete-like domain struc-
ture in contrast to liposome membrane from pure
DPPC at the same temperature (Fig. 3D). Another in-
teresting detail canbe seen in the broad peakof spectral
components at S around 0.5 in the case of healthy
neutrophils (Fig. 3E), which, in fact, consists of two
groups of spectral components–domain types. The
blue domain type has a large polarity correction factor
pA, but not very high sc andW. The yellow-green do-
main type has low pA, low sc and highW. This result
points to the existence of two different domain types
with similar anisotropy of rotational motions but with
different accessibility to water (different pA) and local
concentration of spin probe (different W). Similarly,
the broad peak of spectral components aroundS=0.3
also consists of two different domain types (the violet
and the dark blue), which possess similar S and pA but
differ in sc and W. The dark blue domain type has sc
below1ns,while the violet domain type has sc around2
ns. Therefore, the CODE in Fig. 3E shows at least 5
different domain types. This clearly indicates that the
healthy horse neutrophils’ membrane has a more
complicated structure than the DPPC membrane,
while the characterization of the DPPC liposome
membrane reveals no different solutions at similar S
(Fig. 3D). On the other hand, in the case of the DPPC
liposomes, the distribution of the spectral components
over S is more continuous-like.

When comparing neutrophil cells of healthy (Nph
H) and asthmatic (NphA) horses, a difference is evident
in the complexityof the twosamples.TheNphA sample
(Fig. 3F) shows a considerably larger proportion of
less-ordereddomains compared to theNphH (Fig. 3E).
The well-defined discrete distribution of the spectral
components (less-ordered domains) in the case of the
Nph H has changed into almost continuous distribu-
tion in the case of theNphA. Careful analysis of the two
CODEs (Fig. 3E and 3F) reveals some additional in-
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teresting differences between the two samples. Firstly,
the expressed group of blue spectral components at
high values of S (ordered domain with large pA but not
veryhigh sc andW) disappears fromthe spectrumof the
NphA sample.This leads to the conclusion that theNph
A in contrast to the Nph H do not possess the ordered
domains with high accessibility to water. Moreover, a
new domain type can be found in theNphA, according
to the appearance of green spectral components at very
low S (less-ordered domain with highW, low pA and sc
around 1 ns).With respect to highW, this domain type
accepts a high local concentration of spin probes. One
can speculate that this domain type was transformed
from a part of the violet domain type, i.e., from less-
ordered spectral components with high sc to less-or-
dered spectral components with very low sc.

Discussion

It is known that sphingolipids, cholesterol, peptides
and larger proteins, as well as phospholipids with
saturated or nonsaturated acyl chains, can influence
the motional properties of surrounding molecules
and by doing so can influence the formation of dif-
ferent domain types (Welti & Glaser, 1994). Conse-
quently, complex EPR spectra can occur when the
compositional complexity of a membrane is increased
or when physiological conditions affecting1 the mem-
brane, change. Therefore a real biomembrane (rich in
different membrane constituents) can consist of sev-
eral different domains with different motional char-
acteristics (Glaser, 1993; Edidin, 1997), which induces
many different spectral components in EPR spectra.
Relatively large domain walls (compared to the size
of an individual domain) with continuous variation
of motional characteristics could also increase the
level of complexity. For that reason, we believe that
the soft characterization method, which allows a
large number of different lateral domain types, is
needed to study the lateral heterogeneity of bio-
membranes.

As it was established on the synthetic 3-D spec-
trum and (2+13)-D spectrum (Fig. 2), the soft
characterization method is tuned to resolve discrete
as well as quasi-continuous distributions of spectral
components. Since all spectral optimizations are
performed within the model characterized by Nd

spectral components, it is assumed that each optimi-
zation run provides an Nd-dimensional projection of
the original distribution of spectral components
(spectral parameters). At the same time the use of
stochastic hybrid evolutionary optimization (HEO)
guarantees that these different (but v2-equivalent)
solutions can be found.

The result of the soft characterization of the
liposome membrane proves the relative simplicity of
the liposome membrane composed from single lipid

species at the temperature far above the main tran-
sition (Fig. 3C). However, at 37�C a broad peak of
spectral components at higher-order parameter S was
found (Fig. 3D). Even though this is a pure DPPC
membrane, it is measured close to the temperature of
phase transition between different lipid phases, so it is
possible that the phase separation occurs, while only
one type of phospholipid molecules is present in the
membrane (Mouritsen & Jørgensen, 1994). We might
speculate that the detected broad peak distribution of
spectral components could originate from the domain
walls. Nonetheless, it can be concluded that even for
the DPPC liposome membrane at 37�C the standard
(discrete) characterization method for describing the
lateral membrane heterogeneity may not be accurate
enough, although it seems that the standard method
is an appropriate choice at many temperatures (e.g.,
see Fig. 3C) and under other conditions.

The CODEs of the membranes of neutrophil cells
of healthy and asthmatic horses (Fig. 3E and 3F,
respectively) provide a more complex picture of
lateral membrane heterogeneity. Additionally, the
differences between the CODEs of Nph H (Fig. 3E)
and Nph A (Fig. 3F) clearly indicate altered lateral
membrane heterogeneity. Namely, in the case of Nph
A, a new domain type emerges for the order param-
eter S around 0.1 (less-ordered domains with fast
rotational motions, low accessibility to water and
high spin-probe concentration). Moreover, one
domain type disappears at order parameter around S
= 0.5 (ordered domain types with fast rotational
motions, high accessibility to water and low spin-
probe concentration). Finally, the smeared distribu-
tion of slow and less-ordered domains in the case of
Nph A also indicates that the membrane lacks some
of the active systems that otherwise maintain a ‘‘su-
pervised’’ membrane lateral heterogeneity structure.

At the end, it should be stressed that the com-
plexity in the lateral heterogeneity picture does not
necessarily originate only from complex biochemical
composition and lipid phase separation, but also
from membrane active elements, larger domain walls,
different membranes in single cells (when measuring
suspensions of cells), biological diversity among the
cells, as well as from vertical distribution (‘‘instabili-
ty’’) of the spin probes.

It should not be overlooked that the domain
picture depends on the experimental method used
and is therefore determined by its time and distance
scales. Therefore every method would strongly need
an additional experimental support from other ex-
perimental methods as well as computational meth-
ods. In order to detect the complexity in the lateral
domain structure of a membrane, the method has to
have a near-molecular resolution and at the same
time possibility to examine larger membrane systems
(the last is still challenging for the molecular dynamic
simulation methods). Currently such additional in-
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formation cannot be obtained by other methods.
Hence, we believe that the presented approach of the
soft characterization provides a powerful tool of
membrane lateral heterogeneity characterization and
should be used by the experimentalist to systemati-
cally resolve the adaptation of membranes caused by
different stress or pathological conditions. However,
one must be aware of the limitations of this method
imposed by the use of restricted fast-motion ap-
proximation, which only empirically describes slow
motional spectral components (if they are present) as
highly restricted fast motional components.

Conclusions

In biomembranes a complex level of lateral hetero-
geneity is expected due to the complex lipid compo-
sition, embedded proteins, and macromolecular
structures such as cytoskeleton and glycocalyx, which
are expected to affect the lateral domain structure and
to widely increase its complexity. In this work it was
shown that an insight into the lateral heterogeneity of
membranes could be obtained by an appropriate in-
terpretation of EPR spectra of spin-labeled lipid bi-
layers. We have demonstrated that the new approach
of interpreting EPR spectra introduced in this work,
i.e., the soft characterization method, can be suc-
cessfully used to gain at least qualitative insight into
the lateral heterogeneity of biomembranes. A special
presentation technique, CODE, was introduced,
which allows a compact presentation of a large
amount of data that characterize different domain
types and distributions of their properties. It was
shown that in many cases discrete distributions of
properties of membrane domains are not appropriate
and that reliable results can be obtained only by
construction of a continuous distribution of domain-
type properties. Besides motional characteristics of
domains also data about the polarity of the spin-label
environment in particular domain types, as well as
estimation about the non-uniformity of spin-label
distribution between the domains can be obtained.

The most important step in this work was the
application of projections to reveal continuous dis-
tributions of spectral parameters of corresponding
spectral components, which was made possible by the
use of HEO. Therefore, the soft characterization and
CODE provide a possibility to study complex lateral
heterogeneity in biomembranes (within the presented
model) with some insight into the membrane domain
characteristics, which in our opinion are not available
by other methods.
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J. Štrancar et al.: Soft Picture of Lateral Heterogeneity 145



membranes close to the chain melting transition from calori-

metry. Biochim. Biophys. Acta 1415:147–162

Hønger, T., Jørgensen, K., Biltonen, R.L., Mouritsen, O.G. 1996.

Activity and Dynamic Lipid Bilayer Microheterogeneity. Bio-

chemistry 35:19–38

Kirste, B. 1992. Methods for automated analysis and simulation of

electron paramagnetic resonance spectra. Anal. Chim. Acta

265:191–200
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